

<u>INTRODUCTION TO COMPUTER TECHNOLOGIES</u> <u>Arithmetic Circuits PRETEST</u>

1)	The most significant bit of the binary number 100000 is
2)	What is the sum of the binary numbers 1111 and 0011?
3)	What is the difference between the binary numbers 1110110 and 1010?
4)	The binary numbers 1110110 equals in decimal?
5)	A half-adder contains a(n) and a(n) gate.
6)	A full-adder contains two circuits.
7)	A full-adder has inputs and outputs.
8)	A 4-bit parallel adder requires
9)	additional gate(s) are required to convert a half-adder into a half- subtractor.

10) Full-adder and Full-subtractor are classified as ______ circuits.

Refer to Fig. 1 (below) for questions 11 - 16.

- 12) The C_0 output from the full-adder circuit for problem <u>a</u> will be _____ (1 bit).
- 13) The sum output from the full-adder circuit for problem \underline{b} will be _____ (1 bit).
- 14) The C_0 output from the full-adder circuit for problem <u>b</u> will be _____ (1 bit).
- 15) The sum output from the full-adder circuit for problem \underline{c} will be _____ (1 bit).
- 16) The C_0 output from the full-adder circuit for problem <u>c</u> will be _____ (1 bit).

Refer to Fig. 2 (below) for questions 17 - 25.

Figure 2

17)	When this unit is adding 1001 to 0101, the control must be
18)	When this unit is adding 1001 to 0101, the output sum appears as binary (4 bits).
19)	When this unit is adding 1001 to 0101, the C_{in} input to the full-adder is owing to the disabled AND gate
20)	The XOR gates function as gates when the control is high (unit in subtract mode).
21)	When this unit is in subtract mode, the end-around carry technique is used to allow the adders to perform binary subtraction.
22)	When this unit is subtracting 1010 from 1100, the bits appearing at the B inputs to the full adders will be [4 bits, with the 8s bit on the left and the 1s bit on the right].
23)	When this unit is subtracting 1010 from 1100, the difference appearing at the output will be binary [4 bits].
24)	When this unit is subtracting 1010 from 1100, the end-around carry line will be (HIGH, LOW).

- 25) This unit can be best described as a(n) ______ adder/subtractor.
- 26) What is the binary product of 1010 X 0111?

- 27) What is the binary product of 1111 X 0101?
- 28) What is the product of $1101_2 \times 2_{10}$ (in binary)?
- 29) What is the product of $1010_2 \times 3_{10}$ (in binary)?
- 30) The 1s complement number 0101 represents ______ in decimal.
- 31) The 1s complement number 1011 represents ______ in decimal.
- 32) The decimal 13 equals _____ (4 bits) in 1s complement.
- 33) The decimal 3 equals _____ (4 bits) in 1s complement.
- 34) When microprocessors process both positive and negative numbers, ______ representation are used.
- 35) The 2s complement number 0101 represents a positive _____ in decimal.
- 36) The 2s complement number 1111 represents a negative ______ in decimal.
- 37) In 2s complement, the MSB is called the _____ bit.
- 38) The decimal -3 equals _____ (4 bits) in 2s complement.
- 39) The decimal 6 equals _____ (4 bits) in 2s complement.
- 40) The decimal -2 equals _____ (4 bits) in 2s complement.
- 41) The sum of the 2s complement numbers 1011 & 1110 equals _____ (4 bits) in 2s complement.
- 42) Subtract 2s complement numbers 0011 from 2s complement numbers 1011 (Give answer in 2s complement).
- 43) Subtract 2s complement numbers 0011 from 2s complement numbers 0111 (Give answer in 2s complement).
- 44) A five bit adder requires _____ half adder(s) and _____ full adder(s).
- 45) A seven bit subtractor requires _____ half subtractor(s) and _____ full subtractor(s).
- 46) A five bit parallel adder/subtractor requires _____ half adder(s), _____ full adder(s), _____ full adder(s), _____ half subtractor(s) and _____ full subtractor(s).